LAYERED PARTITIONS OF PLANAR GRAPHS

In the beginning there was...

Mi. Pilipczuk & Siebertz '18 Every planar graph *G* has a vertex partition \mathcal{P} into geodesics such that G/\mathcal{P} has treewidth ≤ 8

Dujmović, **J.**, **Micek**, **Morin**, **Ueckerdt**, **Wood** '19 Let *G* be a connected planar graph and let *T* be a rooted BFS tree of *G*. Then *G* has a vertex partition \mathcal{P} into vertical paths of *T* such that G/\mathcal{P} has treewidth ≤ 8 .

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Let *G* be a connected planar graph and let *T* be a rooted BFS tree of *G*. Then *G* has a vertex partition \mathcal{P} into *vertical paths* of *T* such that G/\mathcal{P} has treewidth ≤ 8 .

Corollary Every planar graph is a subgraph of $H \boxtimes P$ for some graph H with treewidth ≤ 8 and some path P

Dujmović, **J.**, **Micek**, **Morin**, **Ueckerdt**, **Wood** '19 Planar graphs have bounded queue-number

Dujmović, Esperet, J., Walczak, Wood '19 Planar graphs have bounded nonrepetitive chromatic number

Proof: Partitioning planar graphs

Key lemma. Suppose

- ▶ G⁺ plane triangulation
- T rooted spanning tree of G^+ with root on outer-face
- ▶ cycle *C* partitioned into vertical paths P_1, \ldots, P_k , with $k \leq 6$
- G near-triangulation consisting of C and everything inside.

Then G has a partition \mathcal{P} into vertical paths where $P_1, \ldots, P_k \in \mathcal{P}$ s.t. = G/\mathcal{P} has a tree-decomposition in which every bag has size at most 9 and some bag contains all vertices corresponding to P_1, \ldots, P_k .

Proof: Bounded queue-number

Dujmovic, Morin, Wood '05 If *H* has treewidth *k* then $qn(H) \leq f(k)$

Wiechert '17 If H has treewidth k then $qn(H) \leq 2^k - 1$

Proof: Bounded queue-number

Dujmovic, Morin, Wood '05 If *H* has treewidth *k* then $qn(H) \leq f(k)$

Wiechert '17 If H has treewidth k then $qn(H) \leq 2^k - 1$

Lemma. $qn(H \boxtimes P) \leq 3qn(H) + 1$ for every path P

Kundgen & Pelsmayer '08 If H has treewidth k then $\chi_{NR}(H) \leq 4^k$

Kundgen & Pelsmayer '08 If H has treewidth k then $\chi_{NR}(H) \leq 4^k$

Key definition: Strongly nonrepetitive chromatic number χ_{SNR}

Kundgen & Pelsmayer '08 If H has treewidth k then $\chi_{NR}(H) \leq 4^k$

Key definition: Strongly nonrepetitive chromatic number χ_{SNR}

Dujmović, Esperet, J., Walczak, Wood '19 If *H* has treewidth *k* then $\chi_{SNR}(H) \leq 4^k$

Kundgen & Pelsmayer '08 If H has treewidth k then $\chi_{NR}(H) \leq 4^k$

Key definition: Strongly nonrepetitive chromatic number χ_{SNR}

Dujmović, Esperet, J., Walczak, Wood '19 If H has treewidth k then $\chi_{SNR}(H)\leqslant 4^k$

Lemma. $\chi_{SNR}(H \boxtimes P) \leq 4 \cdot \chi_{SNR}(H)$ for every path *P*

Variant

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every planar graph is a subgraph of $H \boxtimes P \boxtimes K_3$ for some planar graph H with treewidth ≤ 3 and some path P

Variant

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every planar graph is a subgraph of $H \boxtimes P \boxtimes K_3$ for some planar graph H with treewidth ≤ 3 and some path P

Useful for improving bounds:

Dujmović, **J.**, **Micek**, **Morin**, **Ueckerdt**, **Wood** '19 Planar graphs have queue-number ≤ 49

Dujmović, Esperet, J., Walczak, Wood '19 Planar graphs have nonrepetitive chromatic number ≤ 768

Felsner, Micek, Schroeder '19+ Planar graphs have *p*-centered colorings with $O(p^3 \log(p))$ colors

Generalizations

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every graph of Euler genus g is a subgraph of $H \boxtimes P \boxtimes K_{\max\{2g,3\}}$ for some graph H of treewidth ≤ 4 and for some path P

Generalizations

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every graph of Euler genus g is a subgraph of $H \boxtimes P \boxtimes K_{\max\{2g,3\}}$ for some graph H of treewidth ≤ 4 and for some path P

Using the structure theorem for graphs excluding a fixed minor:

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 $\forall H \exists k, a \text{ s.t.}$ every *H*-minor free graph *G* can be obtained by clique-sums of graphs G_1, \ldots, G_t s.t. for $i \in \{1, \ldots, t\}$,

 $G_i \subseteq (H_i \boxtimes P_i) + K_a,$

for some graph H_i with treewidth $\leq k$ and some path P_i

Applications

Dujmović, **J.**, **Micek**, **Morin**, **Ueckerdt**, **Wood** '19 Graphs excluding a fixed minor have bounded queue-number

Dujmović, Esperet, J., Walczak, Wood '19 Graphs excluding a fixed minor have bounded nonrepetitive chromatic number

Applications

Dujmović, **J.**, **Micek**, **Morin**, **Ueckerdt**, **Wood** '19 Graphs excluding a fixed minor have bounded queue-number

Dujmović, Esperet, J., Walczak, Wood '19 Graphs excluding a fixed minor have bounded nonrepetitive chromatic number

Using the structure theorem for graphs excluding a fixed *topological* minor:

Dujmović, Esperet, J., Walczak, Wood '19 Graphs excluding a fixed topological minor have bounded nonrepetitive chromatic number

Open problems

Class \mathcal{G} has strongly sublinear separators (a.k.a. polynomial expansion) if $\exists \varepsilon > 0$ s.t. every *n*-vertex graph in \mathcal{G} has $O(n^{1-\varepsilon})$ balanced separators

Do graphs in such a class have bounded queue number? Bounded nonrepetitive chromatic number?

What about a structure theorem?