LAYERED PARTITIONS OF PLANAR GRAPHS

In the beginning there was...
Mi. Pilipczuk \& Siebertz '18 Every planar graph G has a vertex partition \mathcal{P} into geodesics such that G / \mathcal{P} has treewidth $\leqslant 8$

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Let G be a connected planar graph and let T be a rooted BFS tree of G. Then G has a vertex partition \mathcal{P} into vertical paths of T such that G / \mathcal{P} has treewidth $\leqslant 8$.

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Let G be a connected planar graph and let T be a rooted BFS tree of G. Then G has a vertex partition \mathcal{P} into vertical paths of T such that G / \mathcal{P} has treewidth $\leqslant 8$.

Corollary Every planar graph is a subgraph of $H \boxtimes P$ for some graph H with treewidth $\leqslant 8$ and some path P

Applications

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Planar graphs have bounded queue-number

Dujmović, Esperet, J., Walczak, Wood '19 Planar graphs have bounded nonrepetitive chromatic number

Proof: Partitioning planar graphs

Key lemma. Suppose

- G^{+}plane triangulation
- T rooted spanning tree of G^{+}with root on outer-face
- cycle C partitioned into vertical paths P_{1}, \ldots, P_{k}, with $k \leqslant 6$
- G near-triangulation consisting of C and everything inside.

Then G has a partition \mathcal{P} into vertical paths where $P_{1}, \ldots, P_{k} \in \mathcal{P}$
s.t. $=G / \mathcal{P}$ has a tree-decomposition in which every bag has size at most 9 and some bag contains all vertices corresponding to P_{1}, \ldots, P_{k}.

Proof: Bounded queue-number

Dujmovic, Morin, Wood '05 If H has treewidth k then $\mathrm{qn}(H) \leqslant f(k)$

Wiechert '17 If H has treewidth k then $\mathrm{qn}(H) \leqslant 2^{k}-1$

Proof: Bounded queue-number

Dujmovic, Morin, Wood '05 If H has treewidth k then $\mathrm{qn}(H) \leqslant f(k)$

Wiechert '17 If H has treewidth k then $\mathrm{qn}(H) \leqslant 2^{k}-1$

Lemma. $\mathrm{qn}(H \boxtimes P) \leqslant 3 \mathrm{qn}(H)+1$ for every path P

Proof: Bounded nonrepetitive chromatic number

Kundgen \& Pelsmayer '08 If H has treewidth k then $\chi_{N R}(H) \leqslant 4^{k}$

Proof: Bounded nonrepetitive chromatic number

Kundgen \& Pelsmayer '08 If H has treewidth k then $\chi_{N R}(H) \leqslant 4^{k}$

Key definition: Strongly nonrepetitive chromatic number $\chi_{\text {SNR }}$

Proof: Bounded nonrepetitive chromatic number

Kundgen \& Pelsmayer '08 If H has treewidth k then $\chi_{N R}(H) \leqslant 4^{k}$

Key definition: Strongly nonrepetitive chromatic number $\chi_{S N R}$

Dujmović, Esperet, J., Walczak, Wood '19 If H has treewidth k then $\chi_{\operatorname{SNR}}(H) \leqslant 4^{k}$

Proof: Bounded nonrepetitive chromatic number

Kundgen \& Pelsmayer '08 If H has treewidth k then $\chi_{N R}(H) \leqslant 4^{k}$

Key definition: Strongly nonrepetitive chromatic number $\chi_{\text {SNR }}$

Dujmović, Esperet, J., Walczak, Wood '19 If H has treewidth k then $\chi_{\operatorname{SNR}}(H) \leqslant 4^{k}$

Lemma. $\chi_{S N R}(H \boxtimes P) \leqslant 4 \cdot \chi_{S N R}(H)$ for every path P

Variant

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every planar graph is a subgraph of $H \boxtimes P \boxtimes K_{3}$ for some planar graph H with treewidth $\leqslant 3$ and some path P

Variant

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every planar graph is a subgraph of $H \boxtimes P \boxtimes K_{3}$ for some planar graph H with treewidth $\leqslant 3$ and some path P

Useful for improving bounds:
Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Planar graphs have queue-number $\leqslant 49$

Dujmović, Esperet, J., Walczak, Wood '19 Planar graphs have nonrepetitive chromatic number $\leqslant 768$

Felsner, Micek, Schroeder '19+ Planar graphs have p-centered colorings with $O\left(p^{3} \log (p)\right)$ colors

Generalizations

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every graph of Euler genus g is a subgraph of $H \boxtimes P \boxtimes K_{\max \{2 g, 3\}}$ for some graph H of treewidth $\leqslant 4$ and for some path P

Generalizations

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Every graph of Euler genus g is a subgraph of $H \boxtimes P \boxtimes K_{\max \{2 g, 3\}}$ for some graph H of treewidth $\leqslant 4$ and for some path P

Using the structure theorem for graphs excluding a fixed minor:
Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 $\forall H \exists k$, a s.t. every H -minor free graph G can be obtained by clique-sums of graphs G_{1}, \ldots, G_{t} s.t. for $i \in\{1, \ldots, t\}$,

$$
G_{i} \subseteq\left(H_{i} \boxtimes P_{i}\right)+K_{a},
$$

for some graph H_{i} with treewidth $\leqslant k$ and some path P_{i}

Applications

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Graphs excluding a fixed minor have bounded queue-number

Dujmović, Esperet, J., Walczak, Wood '19 Graphs excluding a fixed minor have bounded nonrepetitive chromatic number

Applications

Dujmović, J., Micek, Morin, Ueckerdt, Wood '19 Graphs excluding a fixed minor have bounded queue-number

Dujmović, Esperet, J., Walczak, Wood '19 Graphs excluding a fixed minor have bounded nonrepetitive chromatic number

Using the structure theorem for graphs excluding a fixed topological minor:

Dujmović, Esperet, J., Walczak, Wood '19 Graphs excluding a fixed topological minor have bounded nonrepetitive chromatic number

Open problems

Class \mathcal{G} has strongly sublinear separators (a.k.a. polynomial expansion) if $\exists \varepsilon>0$ s.t. every n-vertex graph in \mathcal{G} has $O\left(n^{1-\varepsilon}\right)$ balanced separators

Do graphs in such a class have bounded queue number? Bounded nonrepetitive chromatic number?

What about a structure theorem?

